A novel domain suggests a ciliary function for ASPM, a brain size determining gene

نویسنده

  • Chris P. Ponting
چکیده

The N-terminal domain of abnormal spindle-like microcephaly-associated protein (ASPM) is identified as a member of a novel family of ASH (ASPM, SPD-2, Hydin) domains. These domains are present in proteins associated with cilia, flagella, the centrosome and the Golgi complex, and in Hydin and OCRL whose deficiencies are associated with hydrocephalus and Lowe oculocerebrorenal syndrome, respectively. Genes encoding ASH domains thus represent good candidates for primary ciliary dyskinesias. ASPM has been proposed to function in neurogenesis and to be a major determinant of cerebral cortical size in humans. Support for this hypothesis stems from associations between mutations in ASPM and primary microcephaly, and from the rapid evolution of ASPM during recent hominid evolution. The identification of the ASH domain family instead indicates possible roles for ASPM in sperm flagellar or in ependymal cells' cilia. ASPM's rapid evolution may thus reflect selective pressures on ciliary function, rather than pressures on mitosis during neurogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of IQ-motif genes in human cells and ASPM domain structure.

Genes encoding multiple IQ-motif proteins have been identified in the human genome and may be regulated by calmodulin (CaM). Three genes of unknown function, abnormal spindle-like primary microcephaly (ASPM), KIAA0036, and KIAA1023, were expressed strongly in nearly all transformed human cell lines and in a panel of 16 adult human tissues by reverse transcription polymerase chain reaction. Howe...

متن کامل

Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human...

متن کامل

Evolution of the human ASPM gene, a major determinant of brain size.

The size of human brain tripled over a period of approximately 2 million years (MY) that ended 0.2-0.4 MY ago. This evolutionary expansion is believed to be important to the emergence of human language and other high-order cognitive functions, yet its genetic basis remains unknown. An evolutionary analysis of genes controlling brain development may shed light on it. ASPM (abnormal spindle-like ...

متن کامل

Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans.

The enlargement of cetacean brain size represents an enigmatic event in mammalian evolution, yet its genetic basis remains poorly explored. One candidate gene associated with brain size evolution is the abnormal spindle-like microcephaly associated (ASPM), as mutations in this gene cause severe reductions in the cortical size of humans. Here, we investigated the ASPM gene in representative ceta...

متن کامل

The Derived Allele of ASPM Is Associated with Lexical Tone Perception

The ASPM and MCPH1 genes have been implicated in the adaptive evolution of the human brain [Mekel-Bobrov N. et al., 2005. Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309; Evans P.D. et al., 2005. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309]. Curiously, experimental attempts have failed to connect th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 22 9  شماره 

صفحات  -

تاریخ انتشار 2006